cover

Mathematical Structure, Structural Math.

YAMASHITA, Koichiro

http://kymst.net
Free Math Forum by kymst $\mathrm{F}_{\mathrm{M}} \mathrm{F}_{\mathrm{k}}$

2012/03/11(Sun) at Shinjuku

Outline

1 Introduction

2 Category
\square What is a category?
■ Example of categories.

3 Non-set Categories
■ Pre and Partial Order
■ String of letters

Contents

1 Introduction

2 Category

- What is a category?
- Example of categories.

3 Non-set Categories

- Pre and Partial Order
- String of letters

Uram's Dilemma

... how many theorems are published yearly in mathematical journal.

Uram's Dilemma

... how many theorems are published yearly in mathematical journal.
... By multiplying the number of journals by the number of yearly issues, by number of papers per issue and the average number of theorems per paper, [two mathematicians'] estimate came to nearly

Uram's Dilemma

... how many theorems are published yearly in mathematical journal.
... By multiplying the number of journals by the number of yearly issues, by number of papers per issue and the average number of theorems per paper, [two mathematicians'] estimate came to nearly
two

Uram's Dilemma

... how many theorems are published yearly in mathematical journal.
... By multiplying the number of journals by the number of yearly issues, by number of papers per issue and the average number of theorems per paper, [two mathematicians'] estimate came to nearly two hundred

Uram's Dilemma

... how many theorems are published yearly in mathematical journal.
... By multiplying the number of journals by the number of yearly issues, by number of papers per issue and the average number of theorems per paper, [two mathematicians'] estimate came to nearly
two hundred thousand theorems a year.

Uram's Dilemma

... how many theorems are published yearly in mathematical journal.
... By multiplying the number of journals by the number of yearly issues, by number of papers per issue and the average number of theorems per paper, [two mathematicians'] estimate came to nearly
two hundred thousand theorems a year.
... In mathematics one becomes married to one's own little field. Because of this, the judgement of value in mathematical research is becoming more and more difficult, and most of us are becoming mainly technicians.

Davis et al: The Mathematical Experience.

How many mathematics are there?

■ 1868. 12 Fields / 38 Subfields.

How many mathematics are there?

■ 1868. 12 Fields / 38 Subfields.
■ 1979. 61 Fields / 3400 Subfields(about).

How many mathematics are there?

■ 1868. 12 Fields / 38 Subfields.
■ 1979. 61 Fields / 3400 Subfields(about).

- 2000. Mathematics Subject Classification. by AMS. http://www.ams.org/mathscinet/msc/msc2010.html

How many mathematics are there?

■ 1868. 12 Fields / 38 Subfields.
■ 1979. 61 Fields / 3400 Subfields(about).

- 2000. Mathematics Subject Classification. by AMS. http://www.ams.org/mathscinet/msc/msc2010.html $60 \times 2 \times 42=? \quad($ classifications2000.pdf)

But ．．．

私はいまだに覚えているのだが，昔はたいへん学識のある人 には，知られていることをすべて知ることが可能だった，と子供のころに聞かされた。そして，今日では，知られている ことがあまりにも多すぎるので，たとえ生涯をかけても，そ の小さな一部分しか知ることはできないのだ，と．私は後の方の話にびっくりし，がっかりした。

But ．．．

私はいまだに覚えているのだが，昔はたいへん学識のある人 には，知られていることをすべて知ることが可能だった，と子供のころに聞かされた。そして，今日では，知られている ことがあまりにも多すぎるので，たとえ生涯をかけても，そ の小さな一部分しか知ることはできないのだ，と．私は後の方の話にびっくりし，がっかりした。
．．．［しかし］既知の理論の蓄えが雪玉のように膨れていくから といって，全構造を理解することが必ずしも以前にくらべて むずかしくなるわけではない。

But ．．．

私はいまだに覚えているのだが，昔はたいへん学識のある人 には，知られていることをすべて知ることが可能だった，と子供のころに聞かされた。そして，今日では，知られている ことがあまりにも多すぎるので，たとえ生涯をかけても，そ の小さな一部分しか知ることはできないのだ，と．私は後の方の話にびっくりし，がっかりした。
．．．［しかし］既知の理論の蓄えが雪玉のように膨れていくから といって，全構造を理解することが必ずしも以前にくらべて むずかしくなるわけではない。というのは特殊な理論が数を増し，より詳細になる一方で，それに含まれている理論がよ り深い一般的な理論に取り込まれるにつれて，それらはたえ ず「降格」されているからだ。

理解されているすべてのことを理解することがますますむず かしくなっているのか，それともやさしくなっているのかと いう議論は，知識の成長がもつ（．．．） 2 つの反対の傾向，理論の拡がりの増大とその深さの増大のバランスに依存している。

理解されているすべてのことを理解することがますますむず かしくなっているのか，それともやさしくなっているのかと いう議論は，知識の成長がもつ（．．．）2 つの反対の傾向，理論の拡がりの増大とその深さの増大のバランスに依存している。拡がりは理解をよりむずかしくし，深さはよりやさしくする．

理解されているすべてのことを理解することがますますむず かしくなっているのか，それともやさしくなっているのかと いう議論は，知識の成長がもつ（．．．）2 つの反対の傾向，理論の拡がりの増大とその深さの増大のバランスに依存している。拡がりは理解をよりむずかしくし，深さはよりやさしくする． このうち，深さがゆっくりだが確実に勝ちを占めている．．．

ディヴィッド ドイッチュ「世界の究極理論は存在するか」

かなりノーテン \bigcirc ではあるが．．．

Contents

1 Introduction

2 Category
■ What is a category?
■ Example of categories.

3 Non-set Categories
■ Pre and Partial Order - String of letters

- Category
 -What is a category?
 What is category?

Definition

A category \mathscr{C} is a quadruple $\langle\mathscr{O}$, arw, id, o \rangle consisting of
subject to the following conditions:
-What is a category?

What is category?

Definition

A category \mathscr{C} is a quadruple $\langle\mathscr{O}$, arw, id, o \rangle consisting of
■ a class \mathscr{O}, whose members are called \mathscr{C}-objects a class \mathscr{O}, whose members are called \mathscr{C}-objects.

$L_{\text {Category }}$

-What is a category?

What is category?

Definition

A category \mathscr{C} is a quadruple $\langle\mathscr{O}$, arw, id, o \rangle consisting of

- . a class \mathscr{O}, whose members are called \mathscr{C}-objects.
- for each pair (A, B) of \mathscr{C}-objects, a set $\operatorname{arw}[A, B]$ (or, simply $[A, B]$), whose members are called \mathscr{C}-arrows from A to B. If $f \in[A, B]$, then written as $A \xrightarrow{f} B$.

C Category

-What is a category?

What is category?

Definition

A category \mathscr{C} is a quadruple $\langle\mathscr{O}$, arw, id, o \rangle consisting of
■ . a class \mathscr{O}, whose members are called \mathscr{C}-objects.
■ for each pair (A, B) of \mathscr{C}-objects, a set $\operatorname{arw}[A, B]$ (or, simply $[A, B]$), whose members are called \mathscr{C}-arrows from A to B. if $f \in[A, B]$, then written as $A \xrightarrow{f} B$.

- for each \mathscr{C}-object A, an arrow $A \xrightarrow{\text { id }_{A}} A$, called the \mathscr{C}-identity on A for each \mathscr{C}-object A, an arrow $A \xrightarrow{\text { id }_{A}} A$, called the \mathscr{C}-identity on A.

$L_{\text {Category }}$

-What is a category?

What is category?

Definition

A category \mathscr{C} is a quadruple $\langle\mathscr{O}$, arw, id, o \rangle consisting of
■ . a class \mathscr{O}, whose members are called \mathscr{C}-objects.

- for each pair (A, B) of \mathscr{C}-objects, a set $\operatorname{arw}[A, B]$ (or, simply $[A, B]$), whose members are called \mathscr{C}-arrows from A to B. if $f \in[A, B]$, then written as $A \xrightarrow{f} B$.
■ . for each \mathscr{C}-object A, an arrow $A \xrightarrow{\text { id }_{A}} A$, called the \mathscr{C}-identity on A.
- a composition law associating with each arrow $A \xrightarrow{f} B$ and each arrow $B \xrightarrow{g} C$ an arrow $A \xrightarrow{\text { g०f }} C$, called the composite of f and g.
subject to the following conditions:

What is a category?

Condition for categories

Category
 -What is a category?
 Condition for categories

(a) composition is associative. i.e. for arrows

$$
A \xrightarrow{f} B, B \xrightarrow{g} C, C \xrightarrow{h} D,
$$

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

holds.

- Category
 What is a category?
 Condition for categories

(a) composition is associative. i.e. for arrows

$$
\begin{array}{rl}
A \xrightarrow{f} B, B \xrightarrow{g} C & C \\
& C \xrightarrow{h} D, \\
& h \circ(g \circ f)=(h \circ g) \circ f
\end{array}
$$

holds.
(b) identity-arrow id act as identities with respect to composition; i. e. for arrow $A \xrightarrow{f} B$,

$$
\mathrm{id}_{B} \circ f=f \wedge f \circ \mathrm{id}_{A}=f
$$

holds.

- Category
 What is a category?
 Condition for categories

(a) composition is associative. i.e. for arrows

$$
\begin{array}{rl}
A \xrightarrow{f} B, B \xrightarrow{g} C & C \\
& C \xrightarrow{h} D, \\
& h \circ(g \circ f)=(h \circ g) \circ f
\end{array}
$$

holds.
(b) identity-arrow id act as identities with respect to composition; i. e. for arrow $A \xrightarrow{f} B$,

$$
\mathrm{id}_{B} \circ f=f \wedge f \circ \mathrm{id}_{A}=f
$$

holds.
Let's visualize it!

Mathematical Structure, Structural Math.
C Category
What is a category?
Diagrams

Diagrams

Assosiativity
 $h \circ(g \circ f)=(h \circ g) \circ f$

Category
 -What is a category?
 Diagrams

$$
\begin{gathered}
\text { Assosiativity } \\
h \circ(g \circ f)=(h \circ g) \circ f
\end{gathered}
$$

Identity $\mathrm{id}_{B} \circ f=f \wedge f \circ \mathrm{id}_{A}=f$

$A \xrightarrow{\mathrm{id}_{A}} A$

$$
B \xrightarrow[\mathrm{id}_{B}]{ } B .
$$

Category
 -What is a category?
 Diagrams

Assosiativity
 $$
h \circ(g \circ f)=(h \circ g) \circ f
$$

> Identity $\mathrm{id}_{B} \circ f=f \wedge f \circ \mathrm{id}_{A}=f$
$A \xrightarrow{\mathrm{id}_{A}} A$

$$
B \underset{\mathrm{id}_{B}}{ } B .
$$

... Huh! Objects are no more than sets, and arrows are no more than functions!!

Category
 -What is a category?
 Diagrams

$$
\begin{gathered}
\text { Assosiativity } \\
h \circ(g \circ f)=(h \circ g) \circ f
\end{gathered}
$$

$$
\begin{aligned}
& \text { Identity } \\
& \mathrm{id}_{B} \circ f=f \wedge f \circ \mathrm{id}_{A}=f
\end{aligned}
$$

$$
A \xrightarrow{\mathrm{id}_{A}} A
$$

$$
\underset{i d_{B}}{\perp} \underset{\text { id }_{B}}{\perp} B
$$

... Huh! Objects are no more than sets, and arrows are no more than functions!! Do you think so?

C Category
LExample of categories.

Example 1

You are right. But ...

Example 1

You are right. But ... HALFWAY!!

Example 1

You are right. But ... HALFWAY!! O.K., I'll give you examples a little.

Example 1

You are right. But ... HALFWAY!! O.K., I'll give you examples a little.

Example (category Set, Fin)
Category Set consists of :
object : all sets, A, B, \ldots

Example 1

You are right. But ... HALFWAY!! O.K., I'll give you examples a little.

Example (category Set, Fin)

Category Set consists of :

$$
\begin{aligned}
& \text { object }: \\
& \operatorname{arw}[A, B]: \\
& \text { all sets, } A, B, \ldots \\
& \text { all functions from } A \text { to } B .
\end{aligned}
$$

$\left\llcorner_{\text {Example of categories. }}\right.$

Example 1

You are right. But ... HALFWAY!! O.K., I'll give you examples a little.

Example (category Set, Fin)
Category Set consists of :

object	$:$	all sets, A, B, \ldots
$\operatorname{arw}[A, B]$	$:$	all functions from A to B.
${\text { identity } \text { id }_{A}}$	$:$	the identity function from A to itself.

$L_{\text {Category }}$

$\left\llcorner_{\text {Example of categories. }}\right.$

Example 1

You are right. But ... HALFWAY!! O.K., I'll give you examples a little.

Example (category Set, Fin)
Category Set consists of :
object : all sets, A, B,
$\operatorname{arw}[A, B]$: all functions from A to B.
identity id_{A} : the identity function from A to itself.
Fin is defined by replacing "all set" in Set by all finite sets as object.

Example 2

Definition (Group)

A triplet $(G, *, e)$ of a non-empty set G, a binary operation * on G and a special single element e is a group when the conditions below are satisfied: (are you ready?)

Example 2

Definition (Group)

A triplet $(G, *, e)$ of a non-empty set G, a binary operation * on G and a special single element e is a group when the conditions below are satisfied: (are you ready?)

■ Closure: If $a, b \in G$, then $a * b \in G$;

- Associativity: For all $a, b, c \in G, a *(b * c)=(a * b) * c$;
- Identity: There is an element $e \in G$ such that for all

$$
a \in G, e * a=a * e=a ;
$$

- Inverse: For any $a \in G$, there is an element a^{-1} such that $a * a^{-1}=a^{-1} * a=e$.

$L_{\text {Category }}$

LExample of categories.

Example 2

Definition (Group)

A triplet $(G, *, e)$ of a non-empty set G, a binary operation $*$ on G and a special single element e is a group when the conditions below are satisfied: (are you ready?)

- Closure: If $a, b \in G$, then $a * b \in G$;
- Associativity: For all $a, b, c \in G, a *(b * c)=(a * b) * c$;
- Identity: There is an element $e \in G$ such that for all

$$
a \in G, e * a=a * e=a ;
$$

- Inverse: For any $a \in G$, there is an element a^{-1} such that $a * a^{-1}=a^{-1} * a=e$.

Example 2

Definition (Group)

A triplet $(G, *, e)$ of a non-empty set G, a binary operation * on G and a special single element e is a group when the conditions below are satisfied: (are you ready?)

■ Closure: If $a, b \in G$, then $a * b \in G$;

- Associativity: For all $a, b, c \in G, a *(b * c)=(a * b) * c$;
- Identity: There is an element $e \in G$ such that for all

$$
a \in G, e * a=a * e=a
$$

- Inverse: For any $a \in G$, there is an element a^{-1} such that $a * a^{-1}=a^{-1} * a=e$.

Example 2

Definition (Group)

A triplet $(G, *, e)$ of a non-empty set G, a binary operation * on G and a special single element e is a group when the conditions below are satisfied: (are you ready?)

■ Closure If $a, b \in G$, then $a * b \in G$;
■ Associativity: For all $a, b, c \in G, a *(b * c)=(a * b) * c$;

- Identity: There is an element $e \in G$ such that for all $a \in G, e * a=a * e=a ;$
- Inverse: For any $a \in G$, there is an element a^{-1} such that $a * a^{-1}=a^{-1} * a=e$.

Example 2

Definition (Group)

A triplet $(G, *, e)$ of a non-empty set G, a binary operation * on G and a special single element e is a group when the conditions below are satisfied: (are you ready?)

■ Closure: If $a, b \in G$, then $a * b \in G$;

- Associativity: For all $a, b, c \in G, a *(b * c)=(a * b) * c$;
- Identity: There is an element $e \in G$ such that for all
- Inverse: For any $a \in G$, there is an element a^{-1} such that $a * a^{-1}=a^{-1} * a=e$.

Example of Group

We have many groups. For example:

Example of Group

We have many groups. For example:
$\square \mathbb{Z}$ is the set of all integers. $(\mathbb{Z},+, 0)$ is a group. Also $(\mathbb{R},+, 0)$. (\mathbb{R} is the set of all real number.) These are infinite commutative groups.
■ \mathbb{R}^{+}is the set of all positive real numbers. $\left(\mathbb{R}^{+}, \times, 1\right)$ is a group. Also infinite and commutative.

- Let p a prime, and the set $E_{p}^{\times} \stackrel{\text { def }}{=}\{1,2, \ldots, p-1\}$. Then $\left(E_{p}, \times_{p}, 1\right)$ is a group $\left(\times_{p}\right.$ means production mod $p)$. This group is commutative, but finite.
- $S L_{2}(\mathbb{R})$ is the set of 2-dimensional square matrices with real components, whose determinant are unity. $\left(S L_{2}(\mathbb{R}), \cdot, \mathbf{I}\right)$ is a infinite group, which is non-commutative.

Example of Group

We have many groups. For example:
■ \mathbb{Z} is the set of all integers. $(\mathbb{Z},+, 0)$ is a group. Also $(\mathbb{R},+, 0)$. (\mathbb{R} is the set of all real number.) These are infinite commutative groups.
■ \mathbb{R}^{+}is the set of all positive real numbers. $\left(\mathbb{R}^{+}, \times, 1\right)$ is a group. Also infinite and commutative.

- Let p a prime, and the set $E_{p}^{\times} \stackrel{\text { def }}{=}\{1,2, \ldots, p-1\}$. Then $\left(E_{p}, \times_{p}, 1\right)$ is a group (\times_{p} means production mod $p)$. This group is commutative, but finite.
- $S L_{2}(\mathbb{R})$ is the set of 2-dimensional square matrices with real components, whose determinant are unity. $\left(S L_{2}(\mathbb{R}), \cdot, \mathbf{I}\right)$ is a infinite group, which is non-commutative.

Example of Group

We have many groups. For example:
$\square \mathbb{Z}$ is the set of all integers. $(\mathbb{Z},+, 0)$ is a group. Also $(\mathbb{R},+, 0) .(\mathbb{R}$ is the set of all real number.) These are infinite commutative groups.
■ \mathbb{R}^{+}is the set of all positive real numbers. $\left(\mathbb{R}^{+}, \times, 1\right)$ is a group. Also infinite and commutative.

- Let p a prime, and the set $E_{p}^{\times} \stackrel{\text { def }}{=}\{1,2, \ldots, p-1\}$. Then $\left(E_{p}, \times_{p}, 1\right)$ is a group (\times_{p} means production mod $p)$. This group is commutative, but finite.
- $S L_{2}(\mathbb{R})$ is the set of 2-dimensional square matrices with real components, whose determinant are unity. $\left(S L_{2}(\mathbb{R}), \cdot, \mathbf{I}\right)$ is a infinite group, which is non-commutative.

Example of Group

We have many groups. For example:
$\square \mathbb{Z}$ is the set of all integers. $(\mathbb{Z},+, 0)$ is a group. Also $(\mathbb{R},+, 0)$. (\mathbb{R} is the set of all real number.) These are infinite commutative groups.
■ \mathbb{R}^{+}is the set of all positive real numbers. $\left(\mathbb{R}^{+}, x, 1\right)$ is a group. Also infinite and commutative.
■ Let p a prime, and the set $E_{p}^{\times} \stackrel{\text { def }}{=}\{1,2, \ldots, p-1\}$. Then $\left(E_{p}, \times_{p}, 1\right)$ is a group (\times_{p} means production mod $p)$. This group is commutative, but finite.
■ $S L_{2}(\mathbb{R})$ is the set of 2-dimensional square matrices with real components, whose determinant are unity. $\left(S L_{2}(\mathbb{R}), \cdot, \mathbf{I}\right)$ is a infinite group, which is non-commutative.

Example of Group

We have many groups. For example:
$\square \mathbb{Z}$ is the set of all integers. $(\mathbb{Z},+, 0)$ is a group. Also $(\mathbb{R},+, 0)$. (\mathbb{R} is the set of all real number.) These are infinite commutative groups.
■ \mathbb{R}^{+}is the set of all positive real numbers. $\left(\mathbb{R}^{+}, x, 1\right)$ is a group. Also infinite and commutative.
■ Let p a prime, and the set $E_{p}^{\times} \stackrel{\text { def }}{=}\{1,2, \ldots, p-1\}$. Then $\left(E_{p}, x_{p}, 1\right)$ is a group $\left(\times_{p}\right.$ means production mod $p)$. This group is commutative, but finite.
■ $S L_{2}(\mathbb{R})$ is the set of 2-dimensional square matrices with real components, whose determinant are unity. $\left(S L_{2}(\mathbb{R}), \cdot, \mathbf{I}\right)$ is a infinite group, which is non-commutative.

Group Homomorphism

Definition (group homomorphism)
Let G and H be groups. A map $f: G \rightarrow H$ is said to be a homomorphism if for all $a, b \in G$, it holds that

$$
f\left(a *_{G} b\right)=f(a) *_{H} f(b) .
$$

Group Homomorphism

Definition (group homomorphism)

Let G and H be groups. A map $f: G \rightarrow H$ is said to be a homomorphism if for all $a, b \in G$, it holds that

$$
f\left(a *_{G} b\right)=f(a) *_{H} f(b) .
$$

$$
\begin{aligned}
& G \times G \xrightarrow{f \times f} H \times H
\end{aligned}
$$

Example (Addition mod m)

Let $m \in \mathbb{Z}^{+}$fixed, $E_{m} \stackrel{\text { def }}{=}\{0,1, \cdots, m-1\}$, and $+_{m}$ be addition in $\bmod m$. If two groups G, H are $G=(\mathbb{Z},+, 0), H=\left(E_{m},+_{m}, 0\right)$, and $f: G \rightarrow H$ is the residue divided by m, then f is an homomorphism from G to H.

Example (Addition mod m)

Let $m \in \mathbb{Z}^{+}$fixed, $E_{m} \stackrel{\text { def }}{=}\{0,1, \cdots, m-1\}$, and $+_{m}$ be addition in $\bmod m$. If two groups G, H are $G=(\mathbb{Z},+, 0), H=\left(E_{m},+_{m}, 0\right)$, and $f: G \rightarrow H$ is the residue divided by m, then f is an homomorphism from G to H.

Example (Logarithms)

$G=\left(\mathbb{R}^{+}, \times, 1\right)$ and $H=(\mathbb{R},+, 0)$. Logarithmic function $\log : G \rightarrow H$ is a homomorphism from \mathbb{R}^{\times}to \mathbb{R}. (Strictly speaking, log is not only homomorphism, but isomorphism.)
This is the meaning of

Example (Addition mod m)

Let $m \in \mathbb{Z}^{+}$fixed, $E_{m} \stackrel{\text { def }}{=}\{0,1, \cdots, m-1\}$, and $+_{m}$ be addition in $\bmod m$. If two groups G, H are $G=(\mathbb{Z},+, 0), H=\left(E_{m},+_{m}, 0\right)$, and $f: G \rightarrow H$ is the residue divided by m, then f is an homomorphism from G to H.

Example (Logarithms)

$G=\left(\mathbb{R}^{+}, \times, 1\right)$ and $H=(\mathbb{R},+, 0)$. Logarithmic function $\log : G \rightarrow H$ is a homomorphism from \mathbb{R}^{\times}to \mathbb{R}. (Strictly speaking, log is not only homomorphism, but isomorphism.)
This is the meaning of

$$
\log a b=\log a+\log b
$$

category Grp

We have many, many groups and homomorphisms between them.
So, we encounter the second example of categories, called Grp.

category Grp

We have many, many groups and homomorphisms between them.
So, we encounter the second example of categories, called Grp.

Example (category Grp)
Category Grp consists of : object : all groups, G, H, \ldots.

-Category
 - Example of categories.
 category Grp

We have many, many groups and homomorphisms between them.
So, we encounter the second example of categories, called Grp.

Example (category Grp)
Category Grp consists of :

$$
\begin{aligned}
& \text { object }: \\
& \operatorname{arw}[G, H]: \\
& \text { all groups, } G, H, \ldots \\
&
\end{aligned}
$$

-Category
 - Example of categories.
 category Grp

We have many, many groups and homomorphisms between them.
So, we encounter the second example of categories, called Grp.

Example (category Grp)
Category Grp consists of :
object : all groups, G, H, \ldots.
$\operatorname{arw}[G, H]$: all homomorphisms from G to H. identity id $_{G}$: the identity function from G to itself.

Structural sets

We have seen three categories Set, Fin, Grp.

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say
Mathematics =

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say
Mathematics $=$ sets +

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say
Mathematics $=$ sets + structures +

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say
Mathematics $=$ sets + structures + mappings .

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say
Mathematics $=$ sets + structures + mappings .
Don't you think so?

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say
Mathematics $=$ sets + structures + mappings .
Don't you think so?
And when there is a kind of sets with some structure in some region, then

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say
Mathematics $=$ sets + structures + mappings .
Don't you think so?
And when there is a kind of sets with some structure in some region, then a category exists!
Accordingly,

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say
Mathematics $=$ sets + structures + mappings .
Don't you think so?
And when there is a kind of sets with some structure in some region, then a category exists!
Accordingly,

Mathematics $=$

Structural sets

We have seen three categories Set, Fin, Grp. Group is a set with one operation. In general, a base set S with any operations $*_{1}, *_{2}, \ldots$ between elements of S, relations R_{1}, R_{2}, \ldots on S, actions $a_{1}^{T}, a_{2}^{T}, \ldots$ from a set T to elements of S, etc. is called structural set. Groups are simple structural sets.
So, some mathematicians say

$$
\text { Mathematics }=\text { sets }+ \text { structures }+ \text { mappings } .
$$

Don't you think so?
And when there is a kind of sets with some structure in some region, then a category exists!
Accordingly,
Mathematics = category theory!

However, probably, you think

Huhhhh...

However, probably, you think
"But... in any category of structural sets, arrows are in fact functions from a set to a set.

Huhhhh...

However, probably, you think
"But... in any category of structural sets, arrows are in fact functions from a set to a set.

So, category theory is only a kind of general algebra."

Huhhhh...

However, probably, you think
"But... in any category of structural sets, arrows are in fact functions from a set to a set.
So, category theory is only a kind of general algebra."
Truly, the presentator had thought so some times ago. But now, he thinks that this standpoint of view is a "set-structure-mapping imperialism" derived from Bourbakism, and Category theory may, and must be more, more,... casual !

Huhhhh...

However, probably, you think
"But... in any category of structural sets, arrows are in fact functions from a set to a set.
So, category theory is only a kind of general algebra."
Truly, the presentator had thought so some times ago. But now, he thinks that this standpoint of view is a "set-structure-mapping imperialism" derived from Bourbakism, and Category theory may, and must be more, more,... casual ! Let's look at some categories without imperialism.

Contents

1 Introduction

2 Category

- What is a category?

■ Example of categories.

3 Non-set Categories
■ Pre and Partial Order

- String of letters

Order

Categories are ... very ... familiar!

Definition (preorder)

Let R is a binary relation on a set S (i.e. subset of $S \times S=S^{2}$). We say R is reflexive if for any $x, x R x$, and is transitive if $x R y$ and $y R z$ implies $x R z$ for any $x, y, z \in S$. A set S with a reflexive, transitive relation R on it is a structure (S, R) called a preordered set.

Order

Categories are ... very ... familiar!

Definition (preorder)

Let R is a binary relation on a set S (i.e. subset of $S \times S=S^{2}$). We say R is reflexive if for any $x, x R x$, and is transitive if $x R y$ and $y R z$ implies $x R z$ for any $x, y, z \in S$. A set S with a reflexive, transitive relation R on it is a structure (S, R) called a preordered set.

Example
$S=\{0,1\}$ and $0 R 0,0 R 1,1 R 1$ on S.

$$
G 0 \longrightarrow 1 \bigcirc
$$

Definition (poset, toset)

Of binary relation R, if $x R y$ and $y R x$ implies $x=y, R$ is antisymmetric relation.
A preordered set $S=(S, R)$ for which R is antisymmetric is called a partially ordered set or a poset. If, for any elements x and y of poset S, one and only one of $x R y, x=y, y R x$ holds, S is called a totally ordered set or toset.

Definition (poset, toset)

Of binary relation R, if $x R y$ and $y R x$ implies $x=y, R$ is antisymmetric relation.
A preordered set $S=(S, R)$ for which R is antisymmetric is called a partially ordered set or a poset.
If, for any elements x and y of poset S, one and only one of $x R y, x=y, y R x$ holds, S is called a totally ordered set or toset.

Example

For any set S, the set of all subsets of S is called power set of S, written as $\mathscr{P}(S)$. The pair $(\mathscr{P}(S), \subseteq)$ is a poset. If \leq is the usual ordering, the pair (\mathbb{R}, \leq) is a toset.

Casual category 1

Theorem (Ordered sets)
Any preordered-, po-, to-set is a category.

Casual category 1

Theorem (Ordered sets)
Any preordered-, po-, to-set is a category.

Proof.

Let S any ordered set and its order relation be written as " \leq ", so we think (S, \leq).

$$
\text { object : all elements of } S . x, y, \ldots
$$

Casual category 1

Theorem (Ordered sets)
Any preordered-, po-, to-set is a category.

Proof.

Let S any ordered set and its order relation be written as " \leq ", so we think (S, \leq).

$$
\begin{array}{rll}
\text { object } & : & \text { all elements of } S . \\
\operatorname{arw}[x, y] & : & x \rightarrow y, \ldots, \text { i.e. } x \leq y .
\end{array}
$$

Casual category 1

Theorem (Ordered sets)

Any preordered-, po-, to-set is a category.

Proof.

Let S any ordered set and its order relation be written as " \leq ", so we think (S, \leq).

$$
\begin{array}{rll}
\text { object } & : & \text { all elements of } S . \\
\operatorname{arw}[x, y] & : & x \rightarrow y, \ldots, \text { i.e. } x \leq y .
\end{array}
$$

composition : transitivity. $x \leq y, y \leq z \Rightarrow x \leq z$

Casual category 1

Theorem (Ordered sets)

Any preordered-, po-, to-set is a category.

Proof.

Let S any ordered set and its order relation be written as " \leq ", so we think (S, \leq).

$$
\begin{array}{rll}
\text { object } & : & \text { all elements of } S . \quad x, y, \ldots \\
\operatorname{arw}[x, y] & : & x \rightarrow y, \text { i.e. } x \leq y .
\end{array}
$$

composition : transitivity. $x \leq y, y \leq z \Rightarrow x \leq z$ identity id $_{x}$: reflexive. $x \leq x$.

Casual category 1

Theorem (Ordered sets)

Any preordered-, po-, to-set is a category.

Proof.

Let S any ordered set and its order relation be written as " \leq ", so we think (S, \leq).

$$
\begin{array}{rll}
\text { object } & : & \text { all elements of } S . \quad x, y, \ldots \\
\operatorname{arw}[x, y] & : & x \rightarrow y, \text { i.e. } x \leq y .
\end{array}
$$

composition : transitivity. $x \leq y, y \leq z \Rightarrow x \leq z$ identity id $_{x}$: reflexive. $x \leq x$.

It is very casual, isn't it?

Powerset

Example (poset category)
$S=\{a, b, c\}$ has $2^{3}=8$ subsets, so $\sharp \mathscr{P}(S)=8$. Diagram below is the poset category ($\mathscr{P}(S), \subseteq$) (braces $\}$ are omitted).

Powerset

Example (poset category)
$S=\{a, b, c\}$ has $2^{3}=8$ subsets, so $\sharp \mathscr{P}(S)=8$. Diagram below is the poset category ($\mathscr{P}(S), \subseteq$) (braces $\}$ are omitted).

Words

Definition (alphabets, words, concatenation)

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ a set called alphabet-set, and strings (or lists) of elements of Σ called words on Σ. A word is expressed like $w=$ abbabc.

Words

Definition (alphabets, words, concatenation)

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ a set called alphabet-set, and strings (or lists) of elements of Σ called words on Σ. A word is expressed like $w=a b b a b c$. Two words $w_{1}=a b b a, w_{2}=\mathrm{bc}$ given, we define an operation to these, named concatenation written as \bigcirc :

$$
w_{1} \frown w_{2} \stackrel{\text { def }}{=} \text { abbabc. }
$$

Words

Definition (alphabets, words, concatenation)

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ a set called alphabet-set, and strings (or lists) of elements of Σ called words on Σ. A word is expressed like $w=a b b a b c$. Two words $w_{1}=a b b a, w_{2}=\mathrm{bc}$ given, we define an operation to these, named concatenation written as \bigcirc :

$$
w_{1} \frown w_{2} \stackrel{\text { def }}{=} \text { abbabc. }
$$

And we allow empty word which contains no alphabet, written as ε.

Monoid

Definition (monoid)

S a set which has a binary operation $*$. If this operation is associative with identity element $e,(S, *, e)$ is called monoid.

- String of letters

Monoid

Definition (monoid)

S a set which has a binary operation $*$. If this operation is associative with identity element $e,(S, *, e)$ is called monoid.

Example (natural numbers \mathbb{N})
The set \mathbb{N} of natural numbers with addition + and 0 , $(\mathbb{N},+, 0)$, is a monid.

- String of letters

Monoid

Definition (monoid)

S a set which has a binary operation $*$. If this operation is associative with identity element $e,(S, *, e)$ is called monoid.

Example (natural numbers \mathbb{N})
The set \mathbb{N} of natural numbers with addition + and 0 , $(\mathbb{N},+, 0)$, is a monid.

Monoid has not the inverse property, so not a group.

Monoid

Definition (monoid)

S a set which has a binary operation $*$. If this operation is associative with identity element $e,(S, *, e)$ is called monoid.

Example (natural numbers \mathbb{N})

The set \mathbb{N} of natural numbers with addition + and 0 , $(\mathbb{N},+, 0)$, is a monid.

Monoid has not the inverse property, so not a group. If a monoid M has inverse property, i.e. it holds that for any $x \in M$, there exists a inverse element x^{-1} such that $x x^{-1}=x^{-1} x=e$, then M is a group. So

Monoid

Definition (monoid)

S a set which has a binary operation $*$. If this operation is associative with identity element $e,(S, *, e)$ is called monoid.

Example (natural numbers \mathbb{N})

The set \mathbb{N} of natural numbers with addition + and 0 , $(\mathbb{N},+, 0)$, is a monid.

Monoid has not the inverse property, so not a group. If a monoid M has inverse property, i.e. it holds that for any $x \in M$, there exists a inverse element x^{-1} such that $x x^{-1}=x^{-1} x=e$, then M is a group. So
Every group is a monoid, but the inverse is not true.

Kleene closure, free monoid

Definition (Kleene closure)

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ an alphabet set. The Kleene closure of Σ, written as Σ^{*} is the set of all words (strings) with finite length. Σ^{*} includes empty word ε (length 0) and one letter word a, which must be separated from letter (alphabet) a according to contexts.

Kleene closure, free monoid

Definition (Kleene closure)

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ an alphabet set. The Kleene closure of Σ, written as Σ^{*} is the set of all words (strings) with finite length. Σ^{*} includes empty word ε (length 0) and one letter word a, which must be separated from letter (alphabet) a according to contexts.

In English, my utterance "I love you" means

- Non-set Categories

$\square_{\text {String of letters }}$

Kleene closure, free monoid

Definition (Kleene closure)

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ an alphabet set. The Kleene closure of Σ, written as Σ^{*} is the set of all words (strings) with finite length. Σ^{*} includes empty word ε (length 0) and one letter word a, which must be separated from letter (alphabet) a according to contexts.

In English, my utterance "I love you" means
"kymst loves you",

- Non-set Categories

-String of letters

Kleene closure, free monoid

Definition (Kleene closure)

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ an alphabet set. The Kleene closure of Σ, written as Σ^{*} is the set of all words (strings) with finite length. Σ^{*} includes empty word ε (length 0) and one letter word a, which must be separated from letter (alphabet) a according to contexts.

In English, my utterance "I love you" means "kymst loves you", and not

- Non-set Categories

$\left\llcorner_{\text {String of letters }}\right.$

Kleene closure, free monoid

Definition (Kleene closure)

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ an alphabet set. The Kleene closure of Σ, written as Σ^{*} is the set of all words (strings) with finite length. Σ^{*} includes empty word ε (length 0) and one letter word a, which must be separated from letter (alphabet) a according to contexts.

In English, my utterance "I love you" means "kymst loves you", and not
"The 9th alphabet letter loves you".

Words are monoid

Theorem (Free monoid)

For a set Σ the triplet $\left(\Sigma^{*}, \frown, \varepsilon\right)$ is a monoid. This monoid is called free monoid.

Words are monoid

Theorem (Free monoid)

For a set Σ the triplet $\left(\Sigma^{*}, \frown, \varepsilon\right)$ is a monoid. This monoid is called free monoid.

Proof.

What is to be shown is:

- closure. For any words w_{1} and $w_{2}, w_{1} \frown w_{2} \in \Sigma^{*}$.
- associative. For any words w_{1}, w_{2}, w_{3}

$$
\left(w_{1} \frown w_{2}\right) \frown w_{3}=w_{1} \frown\left(w_{2} \frown w_{3}\right) .
$$

■ identity. For any word $w, \varepsilon w=w \varepsilon=w$.
So all O.K.

Words are monoid

Theorem (Free monoid)

For a set Σ the triplet $\left(\Sigma^{*}, \frown, \varepsilon\right)$ is a monoid. This monoid is called free monoid.

Proof.

What is to be shown is:

- closure. For any words w_{1} and $w_{2}, w_{1} \frown w_{2} \in \Sigma^{*}$.
- associative. For any words w_{1}, w_{2}, w_{3}

$$
\left(w_{1} \frown w_{2}\right) \frown w_{3}=w_{1} \frown\left(w_{2} \frown w_{3}\right) .
$$

■ identity. For any word $w, \varepsilon w=w \varepsilon=w$.
So all O.K.

Words are monoid

Theorem (Free monoid)

For a set Σ the triplet $\left(\Sigma^{*}, \frown, \varepsilon\right)$ is a monoid. This monoid is called free monoid.

Proof.

What is to be shown is:

- closure. For any words w_{1} and $w_{2}, w_{1} \frown w_{2} \in \Sigma$
- associative. For any words w_{1}, w_{2}, w_{3}

$$
\left(w_{1} \frown w_{2}\right) \frown w_{3}=w_{1} \frown\left(w_{2} \frown w_{3}\right) .
$$

■ identity. For any word $w, \varepsilon w=w \varepsilon=w$.
So all O.K.

Words are monoid

Theorem (Free monoid)

For a set Σ the triplet $\left(\Sigma^{*}, \frown, \varepsilon\right)$ is a monoid. This monoid is called free monoid.

Proof.

What is to be shown is:

- closure. For any words W_{1} and $W_{2}, w_{1} \curvearrowleft W_{2} \in \sum$
- associative. For any words w_{1}, w_{2}, w_{3}

\square identity. For any word $w, \varepsilon w=w \varepsilon=w$.
So all O.K.

Casual category 2

We meet second casual category, not sets-mapping-between.

Casual category 2

We meet second casual category, not sets-mapping-between.
Theorem (Monoid category)
Any monoid $(M, *, e)$ is a category.

Casual category 2

We meet second casual category, not sets-mapping-between.

Theorem (Monoid category)

Any monoid $(M, *, e)$ is a category.

Proof.

Let M any monoid. We interpret M as category \mathscr{C}_{M} consisting of :

$$
\text { object : } M \text { alone; }
$$

Casual category 2

We meet second casual category, not sets-mapping-between.

Theorem (Monoid category)

Any monoid $(M, *, e)$ is a category.

Proof.

Let M any monoid. We interpret M as category \mathscr{C}_{M} consisting of :

```
    object : M alone;
    arw[M,M] : all elements of M. x, y,\ldots;
```


Casual category 2

We meet second casual category, not sets-mapping-between.

Theorem (Monoid category)

Any monoid $(M, *, e)$ is a category.

Proof.

Let M any monoid. We interpret M as category \mathscr{C}_{M} consisting of :

$$
\begin{aligned}
& \text { object }: M \text { alone; } \\
& \operatorname{arw}[M, M]: \\
& \text { composition }: \\
& \text { all elements of } M . x, y, \ldots ;
\end{aligned}
$$

Casual category 2

We meet second casual category, not sets-mapping-between.

Theorem (Monoid category)

Any monoid $(M, *, e)$ is a category.

Proof.

Let M any monoid. We interpret M as category \mathscr{C}_{M} consisting of :
object : M alone; $\operatorname{arw}[M, M]: \quad a l l e m e n t s$ of $M . x, y, \ldots$; composition : $*$, binary operetion on M; identity id_{M} : e, the identity element of M.

Is there any more casual category?

Is there any more casual...

Is there any more casual category?
Example ($\mathscr{C}_{\mathbb{N}}$)
Let the monoid $(\mathbb{N},+, 0)$ taken up. The category $\mathscr{C}_{\mathbb{N}}$ has \mathbb{N} as only object, all elements of \mathbb{N} as arrows.

Is there any more casual...

Is there any more casual category?
Example ($\mathscr{C}_{\mathbb{N}}$)
Let the monoid $(\mathbb{N},+, 0)$ taken up. The category $\mathscr{C}_{\mathbb{N}}$ has \mathbb{N} as only object, all elements of \mathbb{N} as arrows.

Let's solve the difficult problem!

$$
1+2=?
$$

$L_{\text {String of letters }}$

Is there any more casual...

Is there any more casual category?
Example ($\mathscr{C}_{\mathbb{N}}$)
Let the monoid $(\mathbb{N},+, 0)$ taken up. The category $\mathscr{C}_{\mathbb{N}}$ has \mathbb{N} as only object, all elements of \mathbb{N} as arrows.

Let's solve the difficult problem!

$$
1+2=?
$$

Free monoid

And one more...
Example (free monoid on Σ)
Free monoid Σ^{*} (Kleene closure) is interpretable as a category. Its object is Σ^{*} itself, and arrows are all elements of Σ^{*} (i.e. words on Σ).

Free monoid

And one more...

Example (free monoid on Σ)

Free monoid Σ^{*} (Kleene closure) is interpretable as a category. Its object is Σ^{*} itself, and arrows are all elements of Σ^{*} (i.e. words on Σ).
Arrow composition is the concatenating the words.

Free monoid

And one more...

Example (free monoid on Σ)

Free monoid Σ^{*} (Kleene closure) is interpretable as a category. Its object is Σ^{*} itself, and arrows are all elements of Σ^{*} (i.e. words on Σ).
Arrow composition is the concatenating the words.
... Composition?

Free monoid

And one more...

Example (free monoid on Σ)

Free monoid Σ^{*} (Kleene closure) is interpretable as a category. Its object is Σ^{*} itself, and arrows are all elements of Σ^{*} (i.e. words on Σ).
Arrow composition is the concatenating the words.
... Composition? ... Are you at home in it?

Free monoid

And one more...

Example (free monoid on Σ)

Free monoid Σ^{*} (Kleene closure) is interpretable as a category. Its object is Σ^{*} itself, and arrows are all elements of Σ^{*} (i.e. words on Σ).
Arrow composition is the concatenating the words.
... Composition? ... Are you at home in it?

Corollary

Let an alphabet-set $\Sigma=\{\mathrm{a}, \mathrm{e}, \mathrm{h}, \mathrm{k}, \mathrm{n}, \mathrm{o}, \mathrm{r}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{y}\}$, then \ldots the sentence-word which I wish deeply to say everybody here belongs to the monoid-category $\mathscr{C}_{\Sigma^{*}}$.

What I want to say everybody is...

For simplicity, Σ^{*} is written as W.

What I want to say everybody is...

For simplicity, Σ^{*} is written as W.

Oh-oh!

What I want to say everybody is...

For simplicity, Σ^{*} is written as W.

Oh-oh! I forget spaces!

What I want to say everybody is...

For simplicity, Σ^{*} is written as W.

Oh-oh! I forget spaces!
Bye bye, everyone.

